Zoonotic parasites associated with predation by dogs and cats | Parasites & Vectors

  • Cecchetti M, Crowley SL, Goodwin CED, McDonald RA. Provision of high meat content food and object play reduce predation of wild animals by domestic cats Felis catus. Curr Biol. 2021;31:1107–11.

    Article 
    CAS 

    Google Scholar
     

  • Cecchetti M, Crowley SL, McDonald J, McDonald RA. Owner-ascribed personality profiles distinguish domestic cats that capture and bring home wild animal prey. Appl Anim Behav Sci. 2022;256:105774.

    Article 

    Google Scholar
     

  • Chevalier V, Davun H, Sorn S, Ly P, Pov V, Ly S. Large scale dog population demography, dog management and bite risk factors analysis: a crucial step towards rabies control in Cambodia. PLoS ONE. 2021;16:e0254192.

    Article 
    CAS 

    Google Scholar
     

  • Fancourt BA, Augusteyn J, Cremasco P, Nolan B, Richards S, Speed J, et al. Measuring, evaluating and improving the effectiveness of invasive predator control programs: feral cat baiting as a case study. J Environ Manage. 2021;280:111691.

    Article 

    Google Scholar
     

  • Wayne RK, Ostrander EA. Origin, genetic diversity, and genome structure of the domestic dog. BioEssays. 1999;21:247–57.

    Article 
    CAS 

    Google Scholar
     

  • Frantz LA, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M, Perri A, et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science. 2016;352:1228–31.

    Article 
    CAS 

    Google Scholar
     

  • Hu Y, Hu S, Wang W, Wu X, Marshall FB, Chen X, et al. Earliest evidence for commensal processes of cat domestication. Proc Natl Acad Sci USA. 2014;111:116–20.

    Article 
    CAS 

    Google Scholar
     

  • Deak BP, Ostendorf B, Taggart DA, Peacock DE, Bardsley DK. The significance of social perceptions in implementing successful feral cat management strategies: a global review. Animals (Basel). 2019;9:617.

    Article 

    Google Scholar
     

  • Ellingsen K, Zanella AJ, Bjerkås E, Indrebø A. The relationship between empathy, perception of pain and attitudes toward pets among Norwegian dog owners. Anthrozoös. 2010;23:231–43.

    Article 

    Google Scholar
     

  • Wald DM, Jacobson SK, Levy JK. Outdoor cats: identifying differences between stakeholder beliefs, perceived impacts, risk and management. Biol Cons. 2013;167:414–24.

    Article 

    Google Scholar
     

  • Chalkowski K, Wilson AE, Lepczyk CA, Zohdy S. Who let the cats out? A global meta-analysis on risk of parasitic infection in indoor versus outdoor domestic cats (Felis catus). Biol Lett. 2019;15:20180840.

    Article 

    Google Scholar
     

  • Stella JL, Croney CC. Environmental aspects of domestic cat care and management: implications for cat welfare. Sci World J. 2016. https://doi.org/10.1155/2016/6296315.

    Article 

    Google Scholar
     

  • Yeates J, Yates D. Staying in or going out? The dilemma for cat welfare. Vet Rec. 2017;180:193–4.

    Article 

    Google Scholar
     

  • Loss SR, Boughton B, Cady SM, Londe DW, McKinney C, O’Connell TJ, et al. Review and synthesis of the global literature on domestic cat impacts on wildlife. J Anim Ecol. 2022;91:1361–72.

    Article 

    Google Scholar
     

  • Hughes J, Macdonald DW. A review of the interactions between free-roaming domestic dogs and wildlife. Biol Conserv. 2020;157:341–51.

    Article 

    Google Scholar
     

  • Loss SR, Will T, Marra PP. The impact of free-ranging domestic cats on wildlife of the United States. Nat Commun 2013; 4: 1396

  • Baker PJ, Bentley AJ, Ansell RJ, Harris S. Impact of predation by domestic cats Felis catus in an urban area. Mammal Rev. 2005;35:302–12.

    Article 

    Google Scholar
     

  • Beckerman AP, Boots M, Gaston KJ. Urban bird declines and the fear of cats. Anim Conserv. 2007;10:320–5.

    Article 

    Google Scholar
     

  • Levy JK, Crawford PC. Humane strategies for controlling feral cat populations. J A Vet Med Ass. 2004;225:1354–60.

    Article 

    Google Scholar
     

  • Levy JK. Feral cat management. Shelter medicine for veterinarians and staff. Ames, IA: Blackwell Publishing; 2004. p. 377–88.


    Google Scholar
     

  • Young JK, Olson KA, Reading RP, Amgalanbaatar S, Berger J. Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience. 2011;61:125–32.

    Article 

    Google Scholar
     

  • Liccioli S, Giraudoux P, Deplazes P, Massolo A. Wilderness in the “city” revisited: different urbes shape transmission of Echinococcus multilocularis by altering predator and prey communities. Trends Parasitol. 2015;31:297–305.

    Article 

    Google Scholar
     

  • Johnson PT, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, et al. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol. 2010;25:362–71.

    Article 

    Google Scholar
     

  • Médoc V, Beisel JN. When trophically-transmitted parasites combine predation enhancement with predation suppression to optimize their transmission. Oikos. 2011;120:1452–8.

    Article 

    Google Scholar
     

  • Seppälä O, Valtonen ET, Benesh DP. Host manipulation by parasites in the world of dead-end predators: adaptation to enhance transmission? Proc Royal Soc B. 2008;275:1611–5.

    Article 

    Google Scholar
     

  • Vyas A, Kim SK, Giacomini N, Boothroyd JC, Sapolsky RM. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci USA. 2007;104:6442–7.

    Article 
    CAS 

    Google Scholar
     

  • Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Su C. Epidemiological significance of Toxoplasma gondii infections in wild rodents: 2009–2020. J Parasitol. 2021;107:182–204.

    CAS 

    Google Scholar
     

  • Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol. 2021;51:95–121.

    Article 
    CAS 

    Google Scholar
     

  • Uttah E, Ogban E, Okonofua C. Toxoplasmosis: a global infection, so widespread, so neglected. Int J Sci Res. 2013;3:1–6.


    Google Scholar
     

  • Hansen-Wheat C, Fitzpatrick JL, Rogell B, Temrin H. Behavioural correlations of the domestication syndrome are decoupled in modern dog breeds. Nat Commun. 2019;10:2422.

    Article 

    Google Scholar
     

  • Smith TD, Van Valkenburgh B. The dog-human connection. Anat Rec (Hoboken). 2021;304:10–8.

    Article 

    Google Scholar
     

  • Driscoll CA, Macdonald DW, O’Brien SJ. From wild animals to domestic pets, an evolutionary view of domestication. Proc Natl Acad Sci USA. 2009;106:9971–8.

    Article 
    CAS 

    Google Scholar
     

  • Montague MJ, Li G, Gandolfi B, Khan R, Aken BL, Searle SMJ, et al. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc Natl Acad Sci USA. 2014;111:17230–5.

    Article 
    CAS 

    Google Scholar
     

  • Galibert F, Quignon P, Hitte C, André C. Toward understanding dog evolutionary and domestication history. C R Biol. 2011;334:190–6.

    Article 

    Google Scholar
     

  • Bergström A, Stanton DWG, Taron UH, Frantz L, Sinding MS, Ersmark E, et al. Grey wolf genomic history reveals a dual ancestry of dogs. Nature. 2022;607:313–20.

    Article 

    Google Scholar
     

  • Driscoll CA, Clutton-Brock J, Kitchener AC, O’Brien SJ. The Taming of the cat. Genetic and archaeological findings hint that wildcats became housecats earlier—and in a different place—than previously thought. Sci Am. 2009;300:68–75.

    Article 

    Google Scholar
     

  • Kurushima JD, Ikram S, Knudsen J, Bleiberg E, Grahn RA, Lyons LA. Cats of the pharaohs: genetic comparison of egyptian cat mummies to their feline contemporaries. J Archaeol Sci. 2012;39:3217–23.

    Article 
    CAS 

    Google Scholar
     

  • Lipinski MJ, Froenicke L, Baysac KC, Billings NC, Leutenegger CM, Levy AM, et al. The ascent of cat breeds: genetic evaluations of breeds and worldwide random-bred populations. Genomics. 2008;91:12–21.

    Article 
    CAS 

    Google Scholar
     

  • Blaisdell JD. The rise of man’s best friend: the popularity of dogs as companion animals in late eighteenth-century London as reflected by the dog tax of 1796. Anthrozoös. 1999;12:76–87.

    Article 

    Google Scholar
     

  • Pereira A, Martins Â, Brancal H, Vilhena H, Silva P, Pimenta P, et al. Parasitic zoonoses associated with dogs and cats: a survey of Portuguese pet owners’ awareness and deworming practices. Parasit Vectors. 2016;9:245.

    Article 

    Google Scholar
     

  • Downes M, Canty MJ, More SJ. Demography of the pet dog and cat population on the island of Ireland and human factors influencing pet ownership. Prev Vet Med. 2009;92:140–9.

    Article 

    Google Scholar
     

  • Jalongo MR. Pet keeping in the time of COVID-19: the canine and feline companions of young children. Early Child Educ J. 2021. https://doi.org/10.1007/s10643-021-01251-9.

    Article 

    Google Scholar
     

  • Kretzler B, König HH, Hajek A. Pet ownership, loneliness, and social isolation: a systematic review. Soc Psychiatry Psychiatr Epidemiol. 2022;57:1935–57.

    Article 

    Google Scholar
     

  • Contreras-Abarca R, Crespin SJ, Moreira-Arce D, Simonetti JA. Redefining feral dogs in biodiversity conservation. Biol Conserv. 2022;265:109434.

    Article 

    Google Scholar
     

  • Baneth G, Thamsborg SM, Otranto D, Guillot J, Blaga R, Deplazes P, et al. Major parasitic zoonoses associated with dogs and cats in Europe. J Comp Pathol. 2016;155:S54-74.

    Article 
    CAS 

    Google Scholar
     

  • Szwabe K, Błaszkowska J. Stray dogs and cats as potential sources of soil contamination with zoonotic parasites. Ann Agric Environ Med. 2017;24:39943.

    Article 

    Google Scholar
     

  • Otranto D, Dantas-Torres F, Mihalca AD, Traub RJ, Lappin M, Baneth G. Zoonotic Parasites of sheltered and stray dogs in the era of the global economic and political crisis. Trends Parasitol. 2017;33:813–25.

    Article 

    Google Scholar
     

  • Fang F, Li J, Huang T, Guillot J, Huang W. Zoonotic helminths parasites in the digestive tract of feral dogs and cats in Guangxi, China. BMC Vet Res. 2015;11:211.

    Article 

    Google Scholar
     

  • Fancourt BA, Harry G, Speed J, Gentle MN. Efficacy and safety of Eradicat® feral cat baits in eastern Australia: population impacts of baiting programmes on feral cats and non-target mammals and birds. J Pest Sci. 2022;95:505–22.

    Article 

    Google Scholar
     

  • Crawford HM, Calver MC, Fleming PA. A Case of letting the cat out of the bag-why trap-neuter-return is not an ethical solution for stray cat (Felis catus) management. Animals (Basel). 2019;9:171.

    Article 

    Google Scholar
     

  • Grigg EK, Kogan LR. Owners’ attitudes, knowledge, and care practices: exploring the implications for domestic cat behavior and welfare in the home. Animals (Basel). 2019;9:978.

    Article 

    Google Scholar
     

  • Ortega-Pacheco A, Jiménez-Coello M. Debate for and against euthanasia in the control of dog populations. Euthanasia—The “Good Death” controversy in humans and animals; Kure, J., Ed. 2011. p. 233–246.

  • Voslářvá E, Passantino A. Stray dog and cat laws and enforcement in Czech Republic and in Italy. Ann Ist Super Sanità. 2012;48:97–104.


    Google Scholar
     

  • Soldanescu TL. Illusory or effective? The protection provided by the Romanian authorities to stray dogs. AUBD. 2021;2021:23.


    Google Scholar
     

  • Debrot AO, Ruijter MN, Endarwin W, van Hooft P, Wulf K, Delnevo AJ. A renewed call for conservation leadership 10 years further in the feral cat Trap-Neuter-Return debate and new opportunities for constructive dialogue. Conserv Sci Pract. 2022;4:e12641.


    Google Scholar
     

  • Abdulkarim A, Khan M, Aklilu E. Stray animal population control: methods, public health concern, ethics, and animal welfare issues. World. 2021;11:319–26.


    Google Scholar
     

  • Barnett BD. Eradication and control of feral and free-ranging dogs in the Galapagos Islands. Proceedings of the vertebrate pest conference, vol 12(12). 1986.

  • Nogales M, Martín A, Tershy BR, Donlan CJ, Veitch D, Puerta N, et al. A review of feral cat eradication on islands. Conserv Biol. 2004;18:310–9.

    Article 

    Google Scholar
     

  • Merz L, Kshirsagar AR, Rafaliarison RR, Rajaonarivelo T, Farris ZJ, Randriana Z, et al. Wildlife predation by dogs in Madagascar. Biotropica. 2022;54:181–90.

    Article 

    Google Scholar
     

  • Dickman CR. House cats as predators in the Australian environment: impacts and management. Hum-wildl interact. 2009;3:41–8.


    Google Scholar
     

  • Sarvi S, Daryani A, Sharif M, Rahimi MT, Kohansal MH, Mirshafiee S, et al. Zoonotic intestinal parasites of carnivores: a systematic review in Iran. Vet World. 2018;11:58.

    Article 

    Google Scholar
     

  • Deplazes P, van Knapen F, Schweiger A, Overgaauw PA. Role of pet dogs and cats in the transmission of helminthic zoonoses in Europe, with a focus on echinococcosis and toxocarosis. Vet Parasitol. 2011;182:41–53.

    Article 

    Google Scholar
     

  • Bonnaud E, Bourgeois K, Vidal E, Kayser Y, Tranchant Y, Legrand J. Feeding ecology of a feral cat population on a small Mediterranean island. J Mammal. 2007;88:1074–81.

    Article 

    Google Scholar
     

  • Loss SR, Marra PP. Population impacts of free‐ranging domestic cats on mainland vertebrates. Front Ecol Environ. 2017; 15:502–509.

  • Doherty TS, Dickman CR, Glen AS, Newsome TM, Nimmo DG, Ritchie EG, et al. The global impacts of domestic dogs on threatened vertebrates. Biol Conserv. 2017;210:56–9.

    Article 

    Google Scholar
     

  • Henderson RW. Consequences of predator introductions and habitat destruction on amphibians and reptiles in the post-Columbus West Indies. Caribb J Sci. 1992;28:1–10.


    Google Scholar
     

  • Galbreath R, Brown D. The tale of the lighthouse-keeper’s cat: discovery and extinction of the Stephens Island wren (Traversia lyalli). Notornis. 2004;51:193–200.


    Google Scholar
     

  • Bonnaud E, Medina FM, Vidal E, Nogales M, Tershy B, Zavaleta E, et al. The diet of feral cats on islands: a review and a call for more studies. Biol Invasions. 2011;13:581–603.

    Article 

    Google Scholar
     

  • Medina FM, Bonnaud E, Vidal E, Nogales M. Underlying impacts of invasive cats on islands: not only a question of predation. Biodivers Conserv. 2014;23:327–42.

    Article 

    Google Scholar
     

  • Loss SR, Boughton B, Cady SM, Londe DW, McKinney C, O’Connell TJ, et al. Review and synthesis of the global literature on domestic cat impacts on wildlife. J Anim Ecol. 2022;91:1361–72.

    Article 

    Google Scholar
     

  • Woinarski JC, South SL, Drummond P, Johnston GR, Nankivell A. The diet of the feral cat (Felis catus), red fox (Vulpes vulpes) and dog (Canis familiaris) over a three-year period at Witchelina Reserve, in arid South Australia. Aust Mammal. 2017;40:204–13.

    Article 

    Google Scholar
     

  • Krauze-Gryz D, Gryz J, Goszczyński J. Predation by domestic cats in rural areas of central Poland: an assessment based on two methods. J Zool. 2012;288:260–6.

    Article 

    Google Scholar
     

  • Tan SML, Stellato AC, Niel L. Uncontrolled outdoor access for cats: an assessment of risks and benefits. Animals (Basel). 2020;10:258.

    Article 

    Google Scholar
     

  • Pirie TJ, Thomas RL, Fellowes MD. Pet cats (Felis catus) from urban boundaries use different habitats, have larger home ranges and kill more prey than cats from the suburbs. Landsc Urban Plan. 2022;220:104338.

    Article 

    Google Scholar
     

  • Walker JK, Bruce SJ, Dale AR. A survey of public opinion on cat (Felis catus) predation and the future direction of cat management in New Zealand. Animals. 2017;7:49.

    Article 

    Google Scholar
     

  • Stobo-Wilson AM, Murphy BP, Legge SM, Caceres-Escobar H, Chapple DG, Crawford HM, et al. Counting the bodies: estimating the numbers and spatial variation of Australian reptiles, birds and mammals killed by two invasive mesopredators. Divers Distrib. 2022;28:976–91.

    Article 

    Google Scholar
     

  • Holderness-Roddam B, McQuillan PB. Domestic dogs (Canis familiaris) as a predator and disturbance agent of wildlife in Tasmania. Australas J Environ Manag. 2014;21:441–52.

    Article 

    Google Scholar
     

  • Genovesi P. Impact of free ranging dogs on wildlife in Italy. Proc Vertebr Pest Conf. 2000;19:19.


    Google Scholar
     

  • Taborsky M. Kiwis and dog predation: observations in Waitangi State Forest. Notornis. 1988;35:197–202.


    Google Scholar
     

  • Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR. Invasive predators and global biodiversity loss. Proc Natl Acad Sci USA. 2016;113:11261–5.

    Article 
    CAS 

    Google Scholar
     

  • Kikillus KH, Chambers GK, Farnworth MJ, Hare KM. Research challenges and conservation implications for urban cat management in New Zealand. Pac Conserv Biol. 2016;23:15–24.

    Article 

    Google Scholar
     

  • Otranto D, Cantacessi C, Pfeffer M, Dantas-Torres F, Brianti E, Deplazes P, et al. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part I: protozoa and tick-borne agents. Vet Parasitol. 2015;213:12–23.

    Article 

    Google Scholar
     

  • Otranto D, Cantacessi C, Dantas-Torres F, Brianti E, Pfeffer M, Genchi C, et al. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part II: helminths and arthropods. Vet Parasitol. 2015;213:24–37.

    Article 

    Google Scholar
     

  • Hutchings MR, Judge J, Gordon IJ, Athanasiadou S, Kyriazakis I. Use of trade-off theory to advance understanding of herbivore–parasite interactions. Mamm Rev. 2006;36:1–16.

    Article 

    Google Scholar
     

  • Frainer A, McKie BG, Amundsen PA, Knudsen R, Lafferty KD. Parasitism and the biodiversity-functioning relationship. Trends Ecol Evol. 2018;33:260–8.

    Article 

    Google Scholar
     

  • Robertson ID, Thompson RC. Enteric parasitic zoonoses of domesticated dogs and cats. Microbes Infect. 2002;4:867–73.

    Article 

    Google Scholar
     

  • Tull A, Valdmann H, Tammeleht E, Kaasiku T, Rannap R, Saarma U. High overlap of zoonotic helminths between wild mammalian predators and rural dogs—an emerging One Health concern? Parasitology. 2022;149:1565–74.

    Article 

    Google Scholar
     

  • Wells K, Gibson DI, Clark NJ, Ribas A, Morand S, McCallum HI. Global spread of helminth parasites at the human-domestic animal-wildlife interface. Glob Chang Biol. 2018;24:3254–65.

    Article 

    Google Scholar
     

  • Han BA, Castellanos AA, Schmidt JP, Fischhoff IR, Drake JM. The ecology of zoonotic parasites in the Carnivora. Trends Parasitol. 2021;37:1096–110.

    Article 

    Google Scholar
     

  • Palmer CS, Robertson ID, Traub RJ, Rees R, Thompson RC. Intestinal parasites of dogs and cats in Australia: the veterinarian’s perspective and pet owner awareness. Vet J. 2010;183:358–61.

    Article 

    Google Scholar
     

  • Dickman CR. Impact of exotic generalist predators on the native fauna of Australia. Wildlife Biol. 1996;2:185–95.

    Article 

    Google Scholar
     

  • Berger L, Skerratt LF, Zhu XQ, Young S, Speare R. Severe sparganosis in Australian tree frogs. J Wildl Dis. 2009;45:921–9.

    Article 

    Google Scholar
     

  • Khademvatan S, Abdizadeh R, Rahim F, Hashemitabar M, Ghasemi M, Tavalla M. Stray cats gastrointestinal parasites and its association with public health in Ahvaz City, South Western of Iran. Jundishapur J Microbiol. 2014. https://doi.org/10.5812/jjm.11079.

    Article 

    Google Scholar
     

  • Overgaauw PA, van Zutphen L, Hoek D, Yaya FO, Roelfsema J, Pinelli E, et al. Zoonotic parasites in fecal samples and fur from dogs and cats in The Netherlands. Vet Parasitol. 2009;163:115–22.

    Article 

    Google Scholar
     

  • Tamponi C, Knoll S, Tosciri G, Salis F, Dessì G, Cappai MG, et al. Environmental contamination by dog feces in touristic areas of italy: parasitological aspects and zoonotic hazards. Am J Trop Med Hyg. 2020;103:1143–9.

    Article 

    Google Scholar
     

  • Lourido S. Toxoplasma gondii. Trends Parasitol. 2019;35:944–5.

    Article 

    Google Scholar
     

  • Sroka J, Karamon J, Dutkiewicz J, Wójcik Fatla A, Zając V, Cencek T. Prevalence of Toxoplasma gondii infection in cats in southwestern Poland. Ann Agric Environ Med. 2018;25:576–80.

    Article 

    Google Scholar
     

  • Nayeri T, Sarvi S, Daryani A. Toxoplasma gondii in mollusks and cold-blooded animals: a systematic review. Parasitology. 2021;148:895–903.

    Article 
    CAS 

    Google Scholar
     

  • Italiano CM, Wong KT, AbuBakar S, Lau YL, Ramli N, Syed SF, et al. Sarcocystis nesbitti causes acute, relapsing febrile myositis with a high attack rate: description of a large outbreak of muscular sarcocystosis in Pangkor Island, Malaysia, 2012. PLoS Negl Trop Dis. 2014;8:e2876.

    Article 

    Google Scholar
     

  • Tappe D, Ernestus K, Rauthe S, Schoen C, Frosch M, Müller A, et al. Initial patient cluster and first positive biopsy findings in an outbreak of acute muscular Sarcocystis-like infection in travelers returning from Tioman island, Peninsular Malaysia, in 2011. J Clin Microbiol. 2013;51:725–6.

    Article 

    Google Scholar
     

  • Lau YL, Chang PY, Tan CT, Fong MY, Mahmud R, Wong KT. Sarcocystis nesbitti infection in human skeletal muscle: possible transmission from snakes. Am J Trop Med Hyg. 2014;90:361–4.

    Article 

    Google Scholar
     

  • Legge S, Taggart PL, Dickman CR, Read JL, Woinarski JC. Cat-dependent diseases cost Australia AU $6 billion per year through impacts on human health and livestock production. Wildl Res. 2020;47:731–46.

    Article 

    Google Scholar
     

  • Guo Y, Ryan U, Feng Y, Xiao L. Emergence of zoonotic Cryptosporidium parvum in China. Trends Parasitol. 2022;38:335–43.

    Article 
    CAS 

    Google Scholar
     

  • Taghipour A, Olfatifar M, Bahadory S, Godfrey SS, Abdoli A, Khatami A, et al. The global prevalence of Cryptosporidium infection in dogs: a systematic review and meta-analysis. Vet Parasitol. 2020;281:109093.

    Article 

    Google Scholar
     

  • Giangaspero A, Iorio R, Paoletti B, Traversa D, Capelli G. Molecular evidence for Cryptosporidium infection in dogs in Central Italy. Parasitol Res. 2006;99:297–9.

    Article 

    Google Scholar
     

  • Taghipour A, Khazaei S, Ghodsian S, Shajarizadeh M, Olfatifar M, Foroutan M, et al. Global prevalence of Cryptosporidium spp. in cats: a systematic review and meta-analysis. Res Vet Sci. 2021;137:77–85.

    Article 

    Google Scholar
     

  • Ramirez NE, Ward LA, Sreevatsan S. A review of the biology and epidemiology of cryptosporidiosis in humans and animals. Microbes Infect. 2004;6:773–85.

    Article 

    Google Scholar
     

  • Köseoğlu AE, Can H, Karakavuk M, Güvendi M, Değirmenci Döşkaya A, Manyatsi PB, et al. Molecular prevalence and subtyping of Cryptosporidium spp. in fecal samples collected from stray cats in İzmir, Turkey. BMC Vet Res. 2022;18:89.

    Article 

    Google Scholar
     

  • Yang R, Ying JL, Monis P, Ryan U. Molecular characterisation of Cryptosporidium and Giardia in cats (Felis catus) in Western Australia. Exp Parasitol. 2015;155:13–8.

    Article 
    CAS 

    Google Scholar
     

  • Sapp SGH, Bradbury RS. The forgotten exotic tapeworms: a review of uncommon zoonotic Cyclophyllidea. Parasitology. 2020;147:533–58.

    Article 

    Google Scholar
     

  • Polley L. Navigating parasite webs and parasite flow: emerging and re-emerging parasitic zoonoses of wildlife origin. Int J Parasitol. 2005;35:1279–94.

    Article 

    Google Scholar
     

  • Széll Z, Tolnai Z, Sréter T. Environmental determinants of the spatial distribution of Mesocestoides spp. and sensitivity of flotation method for the diagnosis of mesocestoidosis. Vet Parasitol. 2015;212:427–30.

    Article 

    Google Scholar
     

  • McAllister CT, Tkach VV, Conn DB. Morphological and molecular characterization of post-larval pre-tetrathyridia of Mesocestoides sp. (Cestoda: Cyclophyllidea) from ground skink, Scincella lateralis (Sauria: Scincidae), from southeastern Oklahoma. J Parasitol. 2018;104:246–53.

    Article 
    CAS 

    Google Scholar
     

  • Voge M. North American cestodes of the genus Mesocestoides. Univ Calif Publ Zool. 1955;59:125–56.


    Google Scholar
     

  • Fincham JE, Seier JV, Verster A, Rose AG, Taljaard JJF, Woodroof CW, et al. Pleural Mesocestoides and cardiac shock in an obese vervet monkey (Cercopithecus aethiops). Vet Path. 1995;32:330–3.

    Article 
    CAS 

    Google Scholar
     

  • Tokiwa T, Taira K, Yamazaki M, Kashimura A, Une Y. The first report of peritoneal tetrathyridiosis in squirrel monkey (Saimiri sciureus). Parasitol Int. 2014;63:705–7.

    Article 

    Google Scholar
     

  • Di Filippo MM, Meoli R, Cavallero S, Eleni C, De Liberato C, Berrilli F. Molecular identification of Mesocestoides sp metacestodes in a captive gold-handed tamarin (Saguinus midas). Infect Genet Evol. 2018;65:399–405.

    Article 

    Google Scholar
     

  • Parker GA, Ball MA, Chubb JC. Evolution of complex life cycles in trophically transmitted helminths. II. How do life-history stages adapt to their hosts? J Evol Biol. 2015;28:292–304.

    Article 
    CAS 

    Google Scholar
     

  • Deplazes P, Hegglin D, Gloor S, Romig T. Wilderness in the city: the urbanization of Echinococcus multilocularis. Trends Parasitol. 2004;20:77–84.

    Article 

    Google Scholar
     

  • Torgerson PR, Keller K, Magnotta M, Ragland N. The global burden of alveolar echinococcosis. PLoS Negl Trop Dis. 2010;4:e722.

    Article 

    Google Scholar
     

  • Baumann S, Shi R, Liu W, Bao H, Schmidberger J, Kratzer W, et al. Worldwide literature on epidemiology of human alveolar echinococcosis: a systematic review of research published in the twenty-first century. Infection. 2019;47:703–27.

    Article 

    Google Scholar
     

  • Hofer S, Gloor S, Müller U, Mathis A, Hegglin D, Deplazes P. High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zürich, Switzerland. Parasitology. 2000;120:135–42.

    Article 

    Google Scholar
     

  • Dyachenko V, Pantchev N, Gawlowska S, Vrhovec MG, Bauer C. Echinococcus multilocularis infections in domestic dogs and cats from Germany and other European countries. Vet Parasitol. 2008;157:244–53.

    Article 
    CAS 

    Google Scholar
     

  • Kern P, Ammon A, Kron M, Sinn G, Sander S, Petersen LR, et al. Risk factors for alveolar echinococcosis in humans. Emerg Infect Dis. 2004;10:2088–93.


    Google Scholar
     

  • Zhang XY, Jian YN, Ma LQ, Li XP, Karanis P. A Case of Coenurosis in a wild rabbit (Lepus sinensis) caused by Taenia serialis metacestode in Qinghai Tibetan plateau Area, China. Korean J Parasitol. 2018;56:195–8.

    Article 

    Google Scholar
     

  • Trasviña-Muñoz E, López-Valencia G, Monge-Navarro FJ, Herrera-Ramírez JC, Haro P, Gómez-Gómez SD, et al. Detection of intestinal parasites in stray dogs from a farming and cattle region of Northwestern Mexico. Pathogens. 2020;9:516.

    Article 

    Google Scholar
     

  • Conboy G. Cestodes of dogs and cats in North America. Vet Clin North Am Small Anim Pract. 2009;39:1075–90.

    Article 

    Google Scholar
     

  • Torgerson PR, Macpherson CN. The socioeconomic burden of parasitic zoonoses: global trends. Vet Parasitol. 2011;182:79–95.

    Article 

    Google Scholar
     

  • Badri M, Olfatifar M, KarimiPourSaryazdi A, Zaki L, Madeira de Carvalho LM, Fasihi Harandi M, et al. The global prevalence of Spirometra parasites in snakes, frogs, dogs, and cats: a systematic review and meta-analysis. Vet Med Sci. 2022;8:2785–805.

    Article 

    Google Scholar
     

  • Mendoza-Roldan JA, Modry D, Otranto D. Zoonotic parasites of reptiles: a crawling threat. Trends Parasitol. 2020;36:677–87.

    Article 

    Google Scholar
     

  • Kuchta R, Kołodziej-Sobocińska M, Brabec J, Młocicki D, Sałamatin R, Scholz T. Sparganosis (Spirometra) in Europe in the Molecular Era. Clin Infect Dis. 2021;72:882–90.

    Article 

    Google Scholar
     

  • Liu W, Gong T, Chen S, Liu Q, Zhou H, He J, et al. Epidemiology, diagnosis, and prevention of sparganosis in Asia. Animals (Basel). 2022;12:1578.

    Article 

    Google Scholar
     

  • Bezerra-Santos MA, Mendoza-Roldan JA, Abramo F, Lia RP, Tarallo VD, Salant H, et al. Transmammary transmission of Troglostrongylus brevior feline lungworm: a lesson from our gardens. Vet Parasitol. 2020;285:109215.

    Article 
    CAS 

    Google Scholar
     

  • Giannelli A, Colella V, Abramo F, do Nascimento Ramos RA, Falsone L, Brianti E, et al. Release of lungworm larvae from snails in the environment: potential for alternative transmission pathways. PLoS Negl Trop Dis. 2015;9:e0003722.

    Article 

    Google Scholar
     

  • Morgan ER, Shaw SE, Brennan SF, De Waal TD, Jones BR, Mulcahy G. Angiostrongylus vasorum: a real heartbreaker. Trends Parasitol. 2005;21:49–51.

    Article 

    Google Scholar
     

  • Riggio F, Mannella R, Ariti G, Perrucci S. Intestinal and lung parasites in owned dogs and cats from central Italy. Vet Parasitol. 2013;193:78–84.

    Article 

    Google Scholar
     

  • Wu TK, Bowman DD. Toxocara canis. Trends Parasitol. 2022;38:709–10.

    Article 

    Google Scholar
     

  • Hotez PJ, Wilkins PP. Toxocariasis: America’s most common neglected infection of poverty and a helminthiasis of global importance? PLoS Negl Trop Dis. 2009;3:e400.

    Article 

    Google Scholar
     

  • Taira K, Saeed I, Permin A, Kapel CM. Zoonotic risk of Toxocara canis infection through consumption of pig or poultry viscera. Vet Parasitol. 2004;121:115–24.

    Article 
    CAS 

    Google Scholar
     

  • Schnieder T, Laabs EM, Welz C. Larval development of Toxocara canis in dogs. Vet Parasitol. 2011;175:193–206.

    Article 

    Google Scholar
     

  • Strube C, Heuer L, Janecek E. Toxocara spp. infections in paratenic hosts. Vet Parasitol. 2013;193:375–89.

    Article 

    Google Scholar
     

  • Oryan A, Sadjjadi SM, Azizi S. Longevity of Toxocara cati larvae and pathology in tissues of experimentally infected chickens. Korean J Parasitol. 2010;48:79–80.

    Article 

    Google Scholar
     

  • Burren CH. The distribution of Toxocara canis larvae in the central nervous system of rodents. Trans R Soc Trop Med Hyg. 1972;66:937–42.

    Article 
    CAS 

    Google Scholar
     

  • Glickman LT, Schantz PM. Epidemiology and pathogenesis of zoonotic toxocariasis. Epidemiol Rev. 1981;3:230–50.

    Article 
    CAS 

    Google Scholar
     

  • Alba-Hurtado F, Muñoz-Guzmán MA, Valdivia-Anda G, Tórtora JL, Ortega-Pierres MG. Toxocara canis: larval migration dynamics, detection of antibody reactivity to larval excretory-secretory antigens and clinical findings during experimental infection of gerbils (Meriones unguiculatus). Exp Parasitol. 2009;122:1–5.

    Article 
    CAS 

    Google Scholar
     

  • Akao N, Tomoda M, Hayashi E, Suzuki R, Shimizu-Suganuma M, Shichinohe K, et al. Cerebellar ataxia due to Toxocara infection in Mongolian gerbils, Meriones unguiculatus. Vet Parasitol. 2003;1:229–37.

    Article 

    Google Scholar
     

  • Overgaauw PAM, Nederland V. Aspects of Toxocara epidemiology: toxocarosis in dogs and cats. Crit Rev Microbiol. 1997;23:233–51.

    Article 
    CAS 

    Google Scholar
     

  • Benelli G, Wassermann M, Brattig NW. Insects dispersing taeniid eggs: who and how? Vet Parasitol. 2021;295:109450.

    Article 

    Google Scholar
     

  • Cardillo N, Prous CG, Krivokapich S, Pittaro M, Ercole M, Perez M, et al. First report of Toxocara cati in the domestic land snail Rumina decollata. Rev Argent Microbiol. 2016;48:206–9.


    Google Scholar
     

  • Giannelli A, Capelli G, Joachim A, Hinney B, Losson B, Kirkova Z, et al. Lungworms and gastrointestinal parasites of domestic cats: a European perspective. Int J Parasitol. 2017;47:517–28.

    Article 

    Google Scholar
     

  • Bowman DD, Montgomery SP, Zajac AM, Eberhard ML, Kazacos KR. Hookworms of dogs and cats as agents of cutaneous larva migrans. Trends Parasitol. 2010;26:162–7.

    Article 

    Google Scholar
     

  • Prociv P, Croese J. Human eosinophilic enteritis caused by dog hookworm Ancylostoma caninum. Lancet. 1990;335:1299–302.

    Article 
    CAS 

    Google Scholar
     

  • Massetti L, Wiethoelter A, McDonagh P, Rae L, Marwedel L, Beugnet F, et al. Faecal prevalence, distribution and risk factors associated with canine soil-transmitted helminths contaminating urban parks across Australia. Int J Parasitol. 2022;52:637–46.

    Article 

    Google Scholar
     

  • Otranto D, Deplazes P. Zoonotic nematodes of wild carnivores. Int J Parasitol Parasites Wildl. 2019;9:370–83.

    Article 

    Google Scholar
     

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *