UK Biobank: a globally important resource for cancer research

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Ahmad AS, Ormiston-Smith N, Sasieni PD. Trends in the lifetime risk of developing cancer in Great Britain: comparison of risk for those born from 1930 to 1960. Br J Cancer. 2015;112:943–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149:778–89.

  • Brown KF, Rumgay H, Dunlop C, Ryan M, Quartly F, Cox A, et al. The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. Br J Cancer. 2018;118:1130–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16:1–17.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Etemad SA, Dewan AK. Kaposi sarcoma updates. Dermatol Clin. 2019;37:505–17.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Downey P, Peakman TC. Design and implementation of a high-throughput biological sample processing facility using modern manufacturing principles. Int J Epidemiol. 2008;37:i46–50.

    Article 
    PubMed 

    Google Scholar
     

  • UK Biobank. UK Biobank: Protocol for a large-scale prospective epidemiological resource (AMENDMENT ONE FINAL) [Internet]. 2007 [cited 2018 Nov 15]. http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf?phpMyAdmin=trmKQlYdjjnQIgJ%2CfAzikMhEnx6

  • Our funding [Internet]. [cited 2022 May 6]. https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/our-funding

  • Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with the general population. Am J Epidemiol. 2017;186:1026–34.

  • Elliott P, Peakman TC. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol. 2008;37:234–44.

    Article 
    PubMed 

    Google Scholar
     

  • Batty GD, Gale CR, Kivimäki M, Deary IJ, Bell S. Comparison of risk factor associations in UK Biobank against representative, general population based studies with conventional response rates: prospective cohort study and individual participant meta-analysis. BMJ. 2020;368. https://www.bmj.com/content/368/bmj.m131

  • National Cancer Registration and Analysis Service. CancerData. [cited 2022 Sep 22]. https://www.cancerdata.nhs.uk/

  • Clarke R, Shipley M, Lewington S, Youngman L, Collins R, Marmot M, et al. Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. Am J Epidemiol [Internet]. 1999;150:341–53.

    Article 
    CAS 

    Google Scholar
     

  • Doherty A, Jackson D, Hammerla N, Plö tz T, Olivier P, Granat MH, et al. Large scale population assessment of physical activity using wrist worn accelerometers: The UK Biobank Study. PLoS ONE. 2017;12:e0169649.

  • Littlejohns TJ, Holliday J, Gibson LM, Garratt S, Oesingmann N, Alfaro-Almagro F, et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat Commun. 2020;11:2624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Relling MV, Dervieux T. Pharmacogenetics and cancer therapy. Nat Rev Cancer. 2001;1:99–108.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • National Cancer Registration and Analysis Service. CancerData. https://www.cancerdata.nhs.uk/ [accessed 22/09/2022].

  • Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50:113–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • UK Biobank. Sample release policy and procedure. 2017. https://www.ukbiobank.ac.uk/media/0nhcwiff/sample-release-policy-and-procedures.pdf

  • Allen NE, Arnold M, Parish S, Hill M, Sheard S, Callen H, et al. Approaches to minimising the epidemiological impact of sources of systematic and random variation that may affect biochemistry assay data in UK Biobank. Wellcome Open Res. 2021;5:222.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Codd V, Denniff M, Swinfield C, Warner SC, Papakonstantinou M, Sheth S, et al. Measurement and initial characterization of leukocyte telomere length in 474,074 participants in UK Biobank. Nat Aging. 2022;2:170–9.

    Article 

    Google Scholar
     

  • Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Szustakowski JD, Balasubramanian S, Kvikstad E, Khalid S, Bronson PG, Sasson A, et al. Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank. Nat Genet. 2021;53: 942–8.

  • Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet. 2020;22:19–37.

    Article 
    PubMed 

    Google Scholar
     

  • Julkunen, H, Cichońska, A, Slagboom, P, Würtz, P, Nightingale Health UK Biobank Initiative. Metabolic biomarker profiling for identification of susceptibility to severe pneumonia and COVID-19 in the general population. eLife. 2021;10:e63033. https://doi.org/10.7554/eLife.63033 (2021).

    Article 

    Google Scholar
     

  • Mentzer AJ, Brenner N, Allen N, Littlejohns TJ, Chong AY, Cortes A, et al. Identification of host–pathogen-disease relationships using a scalable multiplex serology platform in UK Biobank. Nat Commun. 2022;13:1–12.

    Article 

    Google Scholar
     

  • UK Biobank. UK Biobank Malignant Cancer Summary Report. 2022 [cited 2022 Sep 27]. https://biobank.ndph.ox.ac.uk/~bbdatan/CancerSummaryReport.html

  • UK Biobank. UK Biobank Cancer Numbers Summary Report. 2022 [cited 2022 Sep 27]. https://biobank.ndph.ox.ac.uk/~bbdatan/CancerNumbersReport.html

  • Richiardi L, Pizzi C, Pearce N. Commentary: representativeness is usually not necessary and often should be avoided. Int J Epidemiol. 2013;42:1018–22.

    Article 
    PubMed 

    Google Scholar
     

  • O’Mara TA, Glubb DM, Amant F, Annibali D, Ashton K, Attia J, et al. Identification of nine new susceptibility loci for endometrial cancer. Nat Commun. 2018;9:3166.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law PJ, Timofeeva M, Fernandez-Rozadilla C, Broderick P, Studd J, Fernandez-Tajes J, et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat Commun. 2019;10:1–15.

    Article 

    Google Scholar
     

  • Takeuchi F, Kukimoto I, Li Z, Li S, Li N, Hu Z, et al. Genome-wide association study of cervical cancer suggests a role for ARRDC3 gene in human papillomavirus infection. Hum Mol Genet. 2019;28:341–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rashkin SR, Graff RE, Kachuri L, Thai KK, Alexeeff SE, Blatchins MA, et al. Pan-cancer study detects genetic risk variants and shared genetic basis in two large cohorts. Nat Commun. 2020;11:1–14.

    Article 

    Google Scholar
     

  • Clarke TK, Adams MJ, Davies G, Howard DM, Hall LS, Padmanabhan S, et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N = 112 117). Mol Psychiatry. 2017;22:1376–84.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Christakoudi S, Evangelou E, Riboli E, Tsilidis KK. GWAS of allometric body-shape indices in UK Biobank identifies loci suggesting associations with morphogenesis, organogenesis, adrenal cell renewal and cancer. Sci Rep. 2021;11:10688.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith GD, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23:R89–98.

    Article 

    Google Scholar
     

  • Larsson SC, Carter P, Vithayathil M, Kar S, Mason AM, Burgess S. Insulin‐like growth factor‐1 and site‐specific cancers: a Mendelian randomization study. Cancer Med. 2020;9:6836–42.

  • Knuppel A, Fensom GK, Watts EL, Gunter MJ, Murphy N, Papier K, et al. Circulating insulin-like growth factor-I (IGF-I) concentrations and incidence of 30 cancers: prospective analyses in UK Biobank. Cancer Res. 2020;80:4014–21.

  • Watts EL, Fensom GK, Smith Byrne K, Perez‐Cornago A, Allen NE, Knuppel A, et al. Circulating insulin‐like growth factor‐I, total and free testosterone concentrations and prostate cancer risk in 200,000 men in UK Biobank. Int J Cancer. 2020;ijc.33416. https://onlinelibrary.wiley.com/

  • Murphy N, Knuppel A, Papadimitriou N, Martin RM, Tsilidis KK, Smith-Byrne K, et al. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: observational and Mendelian randomization analyses with 430 000 women. Ann Oncol. 2020;31:641–9

  • Ahmed M, Mulugeta A, Lee SH, Mäkinen V-P, Boyle T, Hyppönen E. Adiposity and cancer: a Mendelian randomization analysis in the UK biobank. Int J Obes. 2021;45:2657–65.

  • Ong J-S, An J, Law MH, Whiteman DC, Neale RE, Gharahkhani P, et al. Height and overall cancer risk and mortality: evidence from a Mendelian randomisation study on 310,000 UK Biobank participants. Br J Cancer. 2018;118:1262–7.

  • He Y, Zhang X, Timofeeva M, Farrington SM, Li X, Xu W, et al. Bidirectional Mendelian randomisation analysis of the relationship between circulating vitamin D concentration and colorectal cancer risk. Int J Cancer. 2021; https://onlinelibrary.wiley.com/

  • Salvatore M, Beesley LJ, Fritsche LG, Hanauer D, Shi X, Mondul AM, et al. Phenotype risk scores (PheRS) for pancreatic cancer using time-stamped electronic health record data: discovery and validation in two large biobanks. J Biomed Inform. 2020;113:103652.

  • Smith T, Gunter MJ, Tzoulaki I, Muller DC. The added value of genetic information in colorectal cancer risk prediction models: development and evaluation in the UK Biobank prospective cohort study. Br J Cancer. 2018;119:1036–9.

  • McCarthy CE, Bonnet LJ, Marcus MW, Field JK. Development and validation of a multivariable risk prediction model for head and neck cancer using the UK Biobank. Int J Oncol. 2020;57:1192–202.

    PubMed 
    CAS 

    Google Scholar
     

  • Usher-Smith JA, Harshfield A, Saunders CL, Sharp SJ, Emery J, Walter FM, et al. External validation of risk prediction models for incident colorectal cancer using UK Biobank. Br J Cancer. 2018;118:750–9.

  • Hunter RF, Murray JM, Coleman HG. The association between recreational screen time and cancer risk: findings from the UK Biobank, a large prospective cohort study. Int J Behav Nutr Phys Act. 2020;17:1–25.

    Article 

    Google Scholar
     

  • Kachuri L, Graff RE, Smith-Byrne K, Meyers TJ, Rashkin SR, Ziv E, et al. Pan-cancer analysis demonstrates that integrating polygenic risk scores with modifiable risk factors improves risk prediction. Nat Commun. 2020;11:1–11.

    Article 

    Google Scholar
     

  • Hippisley-Cox J, Coupland C. Symptoms and risk factors to identify men with suspected cancer in primary care: derivation and validation of an algorithm. Br J Gen Pr. 2013;63:e1–10.

    Article 

    Google Scholar
     

  • Hippisley-Cox J, Coupland C. Symptoms and risk factors to identify women with suspected cancer in primary care: derivation and validation of an algorithm. Br J Gen Pr. 2013;63:e11–21.

    Article 

    Google Scholar
     

  • Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am J Hum Genet. 2018;104:21–34.

  • Hung RJ, Warkentin MT, Brhane Y, Chatterjee N, Christiani DC, Landi MT, et al. Assessing lung cancer absolute risk trajectory based on a polygenic risk model. Cancer Res. 2021;81:1607–15.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Akbari P, Gilani A, Sosina O, Kosmicki JA, Khrimian L, Fang YY, et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science. 2021;373:eabf8683.

  • King EA, Davis JW, Degner JF. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 2019;15:e1008489.

  • Knuppel A, Papier K, Fensom GK, Appleby PN, Schmidt JA, Tong TYN, et al. Meat intake and cancer risk: prospective analyses in UK Biobank. Int J Epidemiol. 2020;49:1540–52.

  • Bradbury KE, Murphy N, Key TJ. Diet and colorectal cancer in UK Biobank: a prospective study. Int J Epidemiol. 2019;49:246–58.

  • Morris JS, Bradbury KE, Cross AJ, Gunter MJ, Murphy N. Physical activity, sedentary behaviour and colorectal cancer risk in the UK Biobank. Br J Cancer. 2018;118:920–9.

  • Murray JM, Coleman HG, Hunter RF. Physical activity and cancer risk: findings from the UK Biobank, a large prospective cohort study. Cancer Epidemiol. 2020;68:101780.

    Article 
    PubMed 

    Google Scholar
     

  • Celis-Morales CA, Lyall DM, Welsh P, Anderson J, Steell L, Guo Y, et al. Association between active commuting and incident cardiovascular disease, cancer, and mortality: prospective cohort study. BMJ. 2017;357:j1456.

    Article 
    PubMed 

    Google Scholar
     

  • Travis RC, Balkwill A, Fensom GK, Appleby PN, Reeves GK, Wang X-S, et al. Night shift work and breast cancer incidence: three prospective studies and meta-analysis of published studies. J Natl Cancer Inst. 2016;108:djw169.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yaghjyan L, Rich S, Mao L, Mai V, Egan KM. Interactions of coffee consumption and postmenopausal hormone use in relation to breast cancer risk in UK Biobank. Cancer Causes Control. 2018;29:519–25.

    Article 
    PubMed 

    Google Scholar
     

  • Petrick JL, McMenamin ÚC, Zhang X, Zeleniuch-Jacquotte A, Wactawski-Wende J, Simon TG, et al. Exogenous hormone use, reproductive factors and risk of intrahepatic cholangiocarcinoma among women: results from cohort studies in the Liver Cancer Pooling Project and the UK Biobank. Br J Cancer. 2020;123:316–24.

  • Guo W, Fensom GK, Reeves GK, Key TJ. Physical activity and breast cancer risk: results from the UK Biobank prospective cohort. Br J Cancer. 2020;122:726–32.

  • Christakoudi S, Tsilidis KK, Evangelou E, Riboli E. A body shape index (ABSI), hip index, and risk of cancer in the UK Biobank cohort. Cancer Med. 2021;10:5614–28.

  • Christakoudi S, Tsilidis KK, Evangelou E, Riboli E. Association of body-shape phenotypes with imaging measures of body composition in the UK Biobank cohort: relevance to colon cancer risk. BMC Cancer. 2021;21:1–15.

    Article 

    Google Scholar
     

  • Mullee A, Dimou N, Allen N, O’Mara T, Gunter MJ, Murphy N. Testosterone, sex hormone-binding globulin, insulin-like growth factor-1 and endometrial cancer risk: observational and Mendelian randomization analyses. Br J Cancer. 2021;125:1308–17.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cote DJ, Smith-Warner SA, Creed JH, Furtado J, Gerke T, Wang M, et al. Circulating lipids and glioma risk: results from the UK Biobank, Nurses’ Health Study, and Health Professionals Follow-Up Study. Cancer Causes Control. 2021;4:347–55.

  • Trabert B, Hathaway CA, Rice MS, Rimm EB, Sluss PM, Terry KL, et al. Ovarian cancer risk in relation to blood cholesterol and triglycerides. Cancer Epidemiol Biomark Prev. 2021;30:2044–51.

    Article 
    CAS 

    Google Scholar
     

  • Dashti SG, Viallon V, Simpson JA, Karahalios A, Moreno-Betancur M, English DR, et al. Explaining the link between adiposity and colorectal cancer risk in men and postmenopausal women in the UK Biobank: a sequential causal mediation analysis. Int J Cancer. 2020;147:1881–94.

  • Kwon YW, Jo HS, Bae S, Seo Y, Song P, Song M, et al. Application of proteomics in cancer: recent trends and approaches for biomarkers discovery. Front Med. 2021;8:1644.

    Article 

    Google Scholar
     

  • Widen E, Raben TG, Lello L, Hsu SDH. Machine learning prediction of biomarkers from SNPs and of disease risk from biomarkers in the UK Biobank. Genes. 2021;12:991.

  • Capobianco E. High-dimensional role of AI and machine learning in cancer research. Br J Cancer. 2022;126:523–32.

  • Jang BS, Kim IA. Machine-learning algorithms predict breast cancer patient survival from UK Biobank whole-exome sequencing data. Biomark Med. 2021;15:1529–39.

  • Cetin I, Raisi-Estabragh Z, Petersen SE, Napel S, Piechnik SK, Neubauer S, et al. Radiomics signatures of cardiovascular risk factors in cardiac MRI: results from the UK Biobank. Front Cardiovasc Med. 2020;7:591368.

  • Kart T, Fischer M, Küstner T, Hepp T, Bamberg F, Winzeck S, et al. Deep learning‐based automated abdominal organ segmentation in the UK Biobank and German National Cohort Magnetic Resonance Imaging Studies. Invest Radio. 2021;56:401–8.

    Article 

    Google Scholar
     

  • Willetts M, Hollowell S, Aslett L, Holmes C, Doherty A. Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants. Sci Rep. 2018;8:7961.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng SF, Vaz L, Qureshi N, Kai J. Prediction of premature all-cause mortality: a prospective general population cohort study comparing machine-learning and standard epidemiological approaches. PLoS ONE. 2019;14:e0214365.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • UK Biobank. AMS—Log in [Internet]. [cited 2019 Jan 29]. https://bbams.ndph.ox.ac.uk/ams/

  • Conroy M, Sellors J, Effingham M, Littlejohns TJ, Boultwood C, Gillions L, et al. The advantages of UK Biobank’s open-access strategy for health research. J Intern Med. 2019;286:389–97.

  • UK Biobank. New costs for 2021. [cited 2021 Mar 24]. https://www.ukbiobank.ac.uk/enable-your-research/new-costs-for-2021

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *