CID12261165, a flavonoid compound as antibacterial agents against quinolone-resistant Staphylococcus aureus

  • Hayakawa, I., Takemura, M. & Kimura, Y. Recent progress in the studies of quinolone antibacterials. J. Synth. Org. Chem. Jpn. 52, 92–102 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Redgrave, L. S., Sutton, S. B., Webber, M. A. & Piddock, L. J. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 22, 438–445 (2014).

    Article 
    CAS 

    Google Scholar
     

  • De Oliveira, D. M. P. et al. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020, 33 (2020).


    Google Scholar
     

  • Rice, L. B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 197, 1079–1081 (2008).

    Article 

    Google Scholar
     

  • Fuzi, M., Bano, J. R. & Toth, A. Global evolution of pathogenic bacteria with extensive use of fluoroquinolone agents. Front. Microbiol. 11, 18 (2020).

    Article 

    Google Scholar
     

  • Hiramatsu, K. et al. Multi-drug-resistant Staphylococcus aureus and future chemotherapy. J. Infect. Chemother. 20, 593–601 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Harborne, J. B. & Williams, C. A. Flavone and flavonol glycosides. In The Flavonoids (eds Harborne, J. B. et al.) 376–441 (Springer, 1975).

    Chapter 

    Google Scholar
     

  • Morimoto, Y., Baba, T., Sasaki, T. & Hiramatsu, K. Apigenin as an anti-quinolone-resistance antibiotic. Int. J. Antimicrob. Agents 46, 666–673 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hiramatsu, K. et al. Curing bacteria of antibiotic resistance: Reverse antibiotics, a novel class of antibiotics in nature. Int. J. Antimicrob. Agents 39, 478–485 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mierziak, J., Kostyn, K. & Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules 19, 16240–16265 (2014).

    Article 

    Google Scholar
     

  • Fuzi, M., Szabo, D. & Csercsik, R. Double-serine fluoroquinolone resistance mutations advance major international clones and lineages of various multi-drug resistant bacteria. Front. Microbiol. 8, 14 (2017).

    Article 

    Google Scholar
     

  • Adamczak, A., Ozarowski, M. & Karpinski, T. M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 9, 17 (2020).


    Google Scholar
     

  • Wang, S. et al. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot. 81, 68–78 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jaisinghani, R. N. Antibacterial properties of quercetin. Microbiol. Res. 8, 1 (2017).

    Article 

    Google Scholar
     

  • Siriwong, S., Thumanu, K., Hengpratom, T. & Eumkeb, G. Synergy and mode of action of ceftazidime plus quercetin or luteolin on Streptococcus pyogenes. Evid.-Based Complem. Altern. Med. 2015, 759459 (2015).

    Article 

    Google Scholar
     

  • Li, K. et al. Anticomplement and antimicrobial activities of flavonoids from Entada phaseoloides. Nat. Prod. Commun. 7, 1934578X1200700715 (2012).


    Google Scholar
     

  • Liu, H. et al. Flavonoids from Halostachys caspica and their antimicrobial and antioxidant activities. Molecules 15, 7933–7945 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Basile, A., Giordano, S., López-Sáez, J. A. & Cobianchi, R. C. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 52, 1479–1482 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Basile, A. et al. Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia 71, S110–S116 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Sato, Y. et al. Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 72, 483–488 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Cushnie, T. P. T. & Lamb, A. J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343–356 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing M100. Assessed 03 Mar 2022 (2021).

  • Vipin, C., Mujeeburahiman, M., Ashwini, P., Arun, A. B. & Rekha, P. D. Anti-biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates. Lett. Appl. Microbiol. 68, 464–471 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shu, Y. et al. Antibacterial activity of quercetin on oral infectious pathogens. Afr. J. Microbiol. Res. 5, 5358–5361 (2011).

    CAS 

    Google Scholar
     

  • Zeng, Y., Nikitkova, A., Abdelsalam, H., Li, J. & Xiao, J. Activity of quercetin and kaemferol against Streptococcus mutans biofilm. Arch. Oral Biol. 98, 9–16 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, T. L. A. & Bhattacharya, D. Antimicrobial activity of quercetin: An approach to its mechanistic principle. Molecules 27, 2494 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lynch, T. & Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Phys. 76, 391–396 (2007).


    Google Scholar
     

  • U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). In Vitro Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry (2020).

  • von Moltke, L. L. et al. Inhibition of human cytochromes P450 by components of Ginkgo biloba. J. Pharm. Pharmacol. 56, 1039–1044 (2004).

    Article 

    Google Scholar
     

  • Manach, C. et al. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett. 426, 331–336 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto, N., Moon, J. H., Tsushida, T., Nagao, A. & Terao, J. Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein. Arch. Biochem. Biophys. 372, 347–354 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Czeczot, H. et al. Isolation and studies of the mutagenic activity in the Ames test of flavonoids naturally occurring in medical herbs. Mutat. Res. 240, 209–216 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Resende, F. A., Vilegas, W., Dos Santos, L. C. & Varanda, E. A. Mutagenicity of flavonoids assayed by bacterial reverse mutation (Ames) test. Molecules 17, 5255–5268 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rajhard, S. et al. Solubility of luteolin and other polyphenolic compounds in water, nonpolar, polar aprotic and protic solvents by applying FTIR/HPLC. Processes. 9, 1952 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Junior, S. et al. Antibacterial and antibiofilm activities of quercetin against clinical isolates of Staphyloccocus aureus and Staphylococcus saprophyticus with resistance profile. Int. J. Environ. Agric. Biotechnol. 3, 266213 (2018).


    Google Scholar
     

  • Lee, J.-H. et al. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect. Immun. 79, 4819–4827 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cully, M. Public health: The politics of antibiotics. Nature 509, S16–S17 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fukuda, H., Hori, S. & Hiramatsu, K. Antibacterial activity of gatifloxacin (AM-1155, CG5501, BMS-206584), a newly developed fluoroquinolone, against sequentially acquired quinolone-resistant mutants and the norA transformant of Staphylococcus aureus. Antimicrob. Agents Chemother. 42, 1917–1922 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Morimoto, Y., Baba, T., Matsuda, M. & Hiramatsu, K. Nybomycin, a re-discovered “reverse antibiotic”, acts against quinolone resistant E. faecalis. Nippon Saikingaku Zasshi 72, 137 (2017).


    Google Scholar
     

  • Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. 11th edn. (Clinical and Laboratory Standards Institute, 2018).

  • Matsuo, M. et al. Mutation of RNA polymerase beta subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrob. Agents Chemother. 55, 4188–4195 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Fisher, L. M. & Pan, X. S. Methods to assay inhibitors of DNA gyrase and topoisomerase IV activities. Methods Mol. Med. 142, 11–23 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Akasaka, T., Tanaka, M., Yamaguchi, A. & Sato, K. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: Role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob. Agents Chemother. 45, 2263–2268 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Onodera, Y., Okuda, J., Tanaka, M. & Sato, K. Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV of Enterococcus faecalis. Antimicrob. Agents Chemother. 46, 1800–1804 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Wickman, P. A., Black, J. A., Smith Moland, E., Thomson, K. S. & Hanson, N. D. In vitro development of resistance to DX-619 and other quinolones in enterococci. J. Antimicrob. Chemother. 58, 1268–1273 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. H. et al. Amino acid substitutions of quinolone resistance determining regions in GyrA and ParC associated with quinolone resistance in Acinetobacter baumannii and Acinetobacter genomic species 13TU. J. Microbiol. Immunol. Infect. 45, 108–112 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, B. et al. Analysis of drug resistance determinants in Klebsiella pneumoniae isolates from a tertiary-care hospital in Beijing, China. PLoS ONE 7, e42280 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *