Assessing compatibility and viral fitness between poultry-adapted H9N2 and wild bird-derived neuraminidases

  • Munster, V. J. & Fouchier, R. A. M. Avian influenza virus: Of virus and bird ecology. Vaccine 27, 6340–6344 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olsen, B. et al. Global patterns of influenza a virus in wild birds. Science 312, 384–388 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Short, K. R. et al. One health, multiple challenges: The inter-species transmission of influenza A virus. One Health 1, 1–13 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y.-T., Linster, M., Mendenhall, I. H., Su, Y. C. F. & Smith, G. J. D. Avian influenza viruses in humans: Lessons from past outbreaks. Br. Med. Bull. 132, 81–95 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mostafa, A., Abdelwhab, E. M., Mettenleiter, T. C. & Pleschka, S. Zoonotic potential of influenza A viruses: A comprehensive overview. Viruses 10, 497 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webster, R. G., Laver, W. G., Air, G. M. & Schild, G. C. Molecular mechanisms of variation in influenza viruses. Nature 296, 115–121 (1982).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Swayne, D. E. Avian Influenza (Wiley, 2009).


    Google Scholar
     

  • Ma, W., García-Sastre, A. & Schwemmle, M. Expected and unexpected features of the newly discovered bat influenza A-like viruses. PLoS Pathog. 11, e1004819 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, L., Lycett, S. J. & Leigh Brown, A. J. Reassortment patterns of avian influenza virus internal segments among different subtypes. BMC Evol. Biol. 14, 16 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saunders-Hastings, P. R. & Krewski, D. Reviewing the history of pandemic influenza: Understanding patterns of emergence and transmission. Pathogens 5, 66 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taubenberger, J. K. & Morens, D. M. Influenza: The once and future pandemic. Public Health Rep. 125, 15–26 (2010).

    Article 

    Google Scholar
     

  • Monto, A. S. & Fukuda, K. Lessons from influenza pandemics of the last 100 years. Clin. Infect. Dis. 70, 951–957 (2020).

    PubMed 

    Google Scholar
     

  • Pusch, E. A. & Suarez, D. L. The multifaceted zoonotic risk of H9N2 avian influenza. Vet. Sci. 5, 82 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cáceres, C. J., Rajao, D. S. & Perez, D. R. Airborne transmission of avian origin H9N2 influenza A viruses in mammals. Viruses 13, 1919 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. Molecular characterization, receptor binding property, and replication in chickens and mice of H9N2 avian influenza viruses isolated from chickens, peafowls, and wild birds in eastern China. Emerg. Microbes Infect. 10, 2098–2112 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belser, J. A. et al. Genetically and antigenically divergent influenza A (H9N2) viruses exhibit differential replication and transmission phenotypes in mammalian models. J. Virol. https://doi.org/10.1128/JVI.00451-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. H9N2 influenza virus spillover into wild birds from poultry in China bind to human-type receptors and transmit in mammals via respiratory droplets. Transbound. Emerg. Dis. 69, 669–684 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peacock, T. P., James, J., Sealy, J. E. & Iqbal, M. A global perspective on H9N2 avian influenza virus. Viruses 11, 620 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. PLoS Pathog. 10, e1004508 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, R. et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med. 368, 1888–1897 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, T.T.-Y. et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 502, 241–244 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y. P. et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2 and H5N1 human isolates. Proc. Natl. Acad. Sci. U.S.A. 97, 9654–9658 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naguib, M. M. et al. Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt. Infect. Genet. Evol. 34, 278–291 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Characterizing the core internal gene pool of H9N2 responsible for continuous reassortment with other influenza A viruses. Front. Microbiol. 12, 751142 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. Truncation or deglycosylation of the neuraminidase stalk enhances the pathogenicity of the H5N1 subtype avian influenza virus in mallard ducks. Front. Microbiol. 11, 583588 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stech, O. et al. The neuraminidase stalk deletion serves as major virulence determinant of H5N1 highly pathogenic avian influenza viruses in chicken. Sci. Rep. 5, 13493 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, H. et al. The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus. PLoS One 4, e6277 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuoka, Y. et al. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. J. Virol. 83, 4704–4708 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. et al. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses. Sci. Rep. 7, 10928 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., ZuDohna, H., Cardona, C. J., Miller, J. & Carpenter, T. E. Emergence and genetic variation of neuraminidase stalk deletions in avian influenza viruses. PLoS One 6, e14722 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagy, A., Mettenleiter, T. C. & Abdelwhab, E. M. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiol. Infect. 145, 3320–3333 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, R. J. et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45–49 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, R., Cui, Q. & Rong, L. Competitive cooperation of hemagglutinin and neuraminidase during influenza A virus entry. Viruses 11, 458 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steel, J. & Lowen, A. C. Influenza A virus reassortment. In Influenza Pathogenesis and Control Vol. I (eds Compans, R. W. & Oldstone, M. B. A.) 377–401 (Springer International Publishing, 2014). https://doi.org/10.1007/82_2014_395.

    Chapter 

    Google Scholar
     

  • McDonald, S. M., Nelson, M. I., Turner, P. E. & Patton, J. T. Reassortment in segmented RNA viruses: Mechanisms and outcomes. Nat. Rev. Microbiol. 14, 448–460 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, N., Priyamvada, L., Ende, Z., Steel, J. & Lowen, A. C. Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. PLoS Pathog. 9, e1003421 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richard, M., Herfst, S., Tao, H., Jacobs, N. T. & Lowen, A. C. Influenza A virus reassortment is limited by anatomical compartmentalization following coinfection via distinct routes. J. Virol. 92, e02063-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sautto, G. A., Kirchenbaum, G. A. & Ross, T. M. Towards a universal influenza vaccine: Different approaches for one goal. Virol. J. 15, 17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chungu, K. et al. Establishment of a genetically engineered chicken DF-1 cell line for efficient amplification of influenza viruses in the absence of trypsin. BMC Biotechnol. 21, 2 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C.-W., Jung, K., Jadhao, S. J. & Suarez, D. L. Evaluation of chicken-origin (DF-1) and quail-origin (QT-6) fibroblast cell lines for replication of avian influenza viruses. J. Virol. Methods 153, 22–28 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sauer, A.-K. et al. Characterization of the sialic acid binding activity of influenza A viruses using soluble variants of the H7 and H9 hemagglutinins. PLoS One 9, e89529 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmier, S. et al. In silico prediction and experimental confirmation of HA residues conferring enhanced human receptor specificity of H5N1 influenza A viruses. Sci. Rep. 5, 11434 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hossain, M. J., Hickman, D. & Perez, D. R. Evidence of expanded host range and mammalian-associated genetic changes in a duck H9N2 influenza virus following adaptation in quail and chickens. PLoS One 3, e3170 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorrell, E. M., Song, H., Pena, L. & Perez, D. R. A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens. J. Virol. 84, 11831–11840 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munier, S. et al. A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens. J. Virol. 84, 940–952 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arai, Y. et al. H9N2 influenza virus infections in human cells require a balance between neuraminidase sialidase activity and hemagglutinin receptor affinity. J. Virol. 94, e01210-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matrosovich, M., Zhou, N., Kawaoka, Y. & Webster, R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol. 73, 1146–1155 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castrucci, M. R. & Kawaoka, Y. Biologic importance of neuraminidase stalk length in influenza A virus. J. Virol. 67, 759–764 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blumenkrantz, D., Roberts, K. L., Shelton, H., Lycett, S. & Barclay, W. S. The short stalk length of highly pathogenic avian influenza H5N1 virus neuraminidase limits transmission of pandemic H1N1 virus in ferrets. J. Virol. 87, 10539–10551 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Els, M. C., Air, G. M., Murti, K. G., Webster, R. G. & Laver, W. G. An 18-amino acid deletion in an influenza neuraminidase. Virology 142, 241–247 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J. Virol. 87, 2963–2968 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. U.S.A. 97, 6108–6113 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan, K. E. et al. Improved subtyping of avian influenza viruses using an RT-qPCR-based low density array: ‘Riems Influenza a Typing Array’, version 2 (RITA-2). Viruses 14, 415 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *